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SELECTION OF PARAMETERS FOR A DYNAMIC SYSTEM

UNIVERSAL FOR A GIVEN GROUP OF MANEUVERS

ABSTRACT | 3 gé?é

In the common formulation of optimum control it is necessary [l_
to derive such control functions and select such values of control
which would permit the transfer of the dynamic system from a given
initial condition into a given final condition for a fixed period
of time under the maximum (minimum) of some functional.

Optimum control and optimum values of the parameters which
are the results of the formulated problem's solution will depend
in the general case upon maneuver parameters (initial and final
values, time of maneuver completion). The optimum accomplishment of
a large number of maneuvers with different parameters will require
creation of a large number of nonidentical systems.

The problem is stated of using a given number of various
maneuvers by means of a given number of system types less than the
number of maneuvers. The value of the initial functional, averaged
on the base of all maneuvers, is taken as a criterion of optimiza-
tion. Distribution of the required number of accomplished maneuvers

/2

according to their parameters is taken to be known.

,Y Numbers given in margin indicate pagination in original foreign text.
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An alternative statement of the problem of universalization

of optimum parameters for the dyramic system is considered. It is

assumed that the system may consist of separate modules.
lem is stated of the selection of optimum parameters for
universal for all given maneuvers, and of optimum number
Fa)
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Examples are considered for solution in application

The prob-
a module,

of modules

to the

problem of maximum payload delivery when a body of variable mass and

restricted jet power moves in a gravitational field. It

is shown

that many maneuvers can be accomplished with a little decrease of the

averaged payload by means of one type of propulsion system. Two types

of propulsion system permit us practically to eliminate the decrease.

When a universal module is used, the sacrifice is equally small for

different changes of maneuver parameters.

1. Let us assume that the behavior of a dynamic system is deseribed by

the following ordinary equations

where x:.L represents the phase coordinates of the system, uk(t) the control

functions, w

3

differentiation t.

S
the constant control parametea, and the point denotes time




The usual formulation of the optimum control problem requires the con-
struction of such uk(t) controls and the selection of such LA parameters from
the admissible group that would facilitate that transfer of system (1.1) from

a given initial condition

xe‘f’)’x.:q Y(i-t n) (1.2)

into a glvén Pivml condition

for a fixed period of time T under a maximum (minimum) functional

x,, = X, (T) ( 'J't,=£, (=, ,u,,4 3, x,(Q)-o)B (1.1)

The optimum uk(t) controls .and optimum values of the w, parameters, re-
presenting a solution of the formulated problem will generally depend on the
r:‘a;:xé';igi;j;c;l%ee:‘lznuever {T" <., 'x:u (;_. 1"‘__,")} . We will assume that

A(l.l) are different if the corresponding parameters owat do not coincide. It
is assumed that various Uk(t) controls may occur in the same system (with the
same limitations, of course).

The optimum performance (in a sense of the (1.4) functional) of a large

number of maneuvers with various characteristics

‘{Tm R D) | e
"‘nua T ("’17’")1 = (4' ";’7" S) (-5)

LR

SRR T

requires the creation of a large number of nonidentical systems. The latter

may prove to be unprofitable from an economic point of view.




The problem, as stated, is to achieve S various maneuvers by means of a
given number of ) of system types (1.1) less than S (1 <Q<9. The values of
functional (1.4), averaged on the basis of all maneuvers, is used as a criterion
of optimization.

The optimum () number of the system types should be determined from the
minimum cost. This calls for a knowledge of the development cost of system (1.1)
with parameters different from the previous ones, and a correspondence belween the
cost and functional (1.4). The latter problem is not discussed in this study--
the () number of system types is assumed to be preassigned. fgi;

There is an alternative formulation of the problem regarding the universal-
ization of optimum system parameters. If system (1.1) can be made up of modules,

its w, parameters may be expressed as follows

i

where AW1 represents the module parameters (in the particular case of fully
autonomous modules, dependence (1.6) will be linear: v, = ctAwl). The problem
is to select the optim.umAwI parameters of the modules, common to all S types
of maneuvers, and the optimum number of o, modules for each maneuver.

2. The probability approach is used in the formulation of the optimiza-
tion criterion for the two above-stated problems. The distribution of the
required number of maneuvers to be carried out according to their parameters
(1.5) is predefined. If the required number of completed maneuvers of each

type is added to the total number of all types of maneuvers, this distribution

could be treated as a distribution of the maneuver probability by thelfollowing

type
)

e T(&)V” y @ ; - g ; oy
P" h (r % »Fiy ) ) ‘(""‘.“’s ) 42; b, "¥'f'°’n‘) | (2.1)
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The mean value of functional (1.4) will then figure as a criterion of 7

optimization

s
(x> = Z P, m.<4)(,r(ss) “; (2.2)
4at

that is the value of functional (l.h) averaged up on the basis of all types of

maneuvers (1.5).

The maneuver parameters may be preset not discretely, as in (1.5), but

continuously
T=T), % =%, (4), €%, (1) -(i=1,.,7;0¢4¢8)\ (o5

where S may assume all the values from interval (o, S) (not only integers). In
this case, the probability distribution (2.1) is replaced by the density of the

probability distribution

£
S"? (3 (oms, S.gwds-i)\ (2.4)

and functional (2.2) is changed to

'3

<x°;) = S e (9 X, (Tsy, 4) d4 (2.5)

\
|
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5. Let Wl parameters of system (l.l) be -.capable of assuming Q values

w) ‘
/‘JZ (w- ‘)‘f,‘:‘ﬂ') |

5



It is required to perform S types of maneuvers(l.s) with a (2.1) prob- 57

ability distribution by insuring a maximum (minimum) (2.2) functional.
We will introduce the following new independent variable for each S-type

maneuver in place of time t

T a.f A[T“) '1 : (3.1)

in such a way as to reduce the finite conditions (1.3) and functional (2.2)
to point T = 1 vwhich is common to all maneuvers.

Thereafter the problem can be reduced to a standard formulation (1.1)-
(1.4) for an expanded system of differential equations:

04Tl ; &=t S

PTIY

l "'"'_(6)“ <
d

x, (5) \ * @y (@
L : wal. Lt
— T g?;("j;a“a ) QS Lo g

A

(3.2)

L=04,.,n, Joden ke« {,.2

e

with the following boundary conditions

% @

% 4)
0 i

s owY (323
T OLE (4.1’".}.5" "'fj‘"??n) "
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and functional

8 oy
4 ~ W
(x,>= 3 b, x (1) (3.4)

O
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| Here, as before, xi(s) represents the phase coordinates, (8 (n + 1) units),

i (s) . G /o
| Uk (1) are the control functions, and / 82 unik / , &D; the constant [ §

)
control parameters (Qq units). '

In the case of the constant distribution (2.3)-(2.5), we arrive at the

two-dimensional variational problem for the following system

0T ; 0¢4¢(S
th . B
r;;:’ f‘T(4) £"(Qj , Up )AJt\) st,l,f‘..,n; J=teon . (3.5)
. L.s 1,...)2 . L-‘,...,? '

i
with the following finite conditions
x,(0,8)=0, X (08)=x, (43, %, (1,8) = X (4)  (i=hes ) (5.6)

and functional

| , s
; - (x> = Sg(s)x,u,mds\ (5.7)

0 \
Here xi' x.‘(z‘,é) , ukg uh ('z') 4 )\ are phase coordinates and

control functions depending on two variables; Wl = Wl(s) are piecewise constant

(V) (w

and control functions with a preset number of levels W =1,..., ) which

1
depend only on s.
k. The above-cited variational formulations of (3.2)-(3.L4) and (3.5)= pﬂ

(3.7)are applied to the universal module problem with some changes. Boundary

conditions (3.3) and (3.6) and functionals (3.4) and (3.7) remain unchanged.




There is some change in the writing of the differential equations (for the sake
of simplicity of recording, the (1.6) dependence is assumed to be linear):

for a discrete distribution of (3.2)

dm.“) ‘ﬂ 04T (1544, 8, L=04 ..,n
— T ﬁ (,xjw) ) '(424‘5!3 |\ | ' (1.1)
dr ¢ \J=i,...,’r‘l}'2.-,i),,,‘23” -9 /f

for a continuous distribution of (3.5)

’boc.

AT ,wa (z, ”&»V“"l)

L

o('t(i;o(éé&‘; l=04,.. N
C(h.2)

4,0 kot 2 L;mq,

In the (h.l) equations the constant control parameters AWl are the same

for all 9; ct(s) =1,2,3,... integers may be different for each s number
(unlike (3.2) where the Q number of parameters Wl(w) is less than the S
number of the equation groups).

In the (h 2) equatlons AW, is the constant control parameter (’bA‘Jt/ﬁ'r
"’BA% /’b{ 0) G’ (j)\ the piecewise constant control function of one S
variable which can assume any integral values (unlike (3.5) where the number of
Q levels of the piecewise-constant control Wl( s) is predefined). 10

5. Let us consider the problem of delivering a maximum payload by a
variable-mass body moving in a gravitational field with limited jet power.
Assuming an ideally controlled engine, equations (1.1) are recorded as follows

(see review (1))




& . (Gra)t x Cat
o
2
. .VG, g . (5.1)

B dinates: G 1is the total weight of th %
ere G Iz 2{ are phase coordinates: G_ is the to eight o e curren

reserve of worklng medium Gu= G“.(t) and payload GTT = const., and 'z and 'lf

the radius vector and velocity. Control functions: o £ af(t) ¢ oo ‘is the
acceleration by jet thrust, 0 {J{&)¢{{ the source power applied to the

maximum, and ré(t)] = 1 the vector unit of the thrust direction. The control
parameter G,- o J{‘ is the weight of the power source ( ,ﬂ..a{(G )t

is the specific gravity of the power source which genera.llyrdeper;ds on G , and
NO is the maximum power of the source). The gravitational acceleration at point

( 'Z,'(L)and on the Earth's surface is indicated by ﬁ &(% .Ek and g.

Initial conditions / I /

b .0 )

Gg(0=G,-G,, Z6)-Z, F(o)a¥) (5.2)

Finite conditions

2(TY)-%, , B(T) =7, (5.3)
Funectional of the problem
G, = G_(T) - max " (5.4)

It is a known fact that in this problem the power of the jet stream must
always be at a maximum N(t) = 1. Nor does the program of the jet acceleration
depend on the engine parameteres: [{ #) = a é’ function should be selected
from the following minimum integral

T

'} - azd'l:‘ (5.5)
5



and should facilitate the transposition of ( "é - a + f )\ between the two
\
reset points {3 a ) oand {2 " } dur; Vtime T.
P P {293 ﬁ.} {‘Z! H v‘ ) ine
The first equation of (5.1) may be integrated in quadratures and

resolved in relation to the functional of problem (1)

”~~

RPN A SR
o . o ka—(oL/z?)} : ) (5.6)
[z

(here Grr and Gv are assumed to refer to the initial weight of GO).
> & - — \i
After that, the functional of (5.5) él- } (T, 2.5, , 24U )\ may be

considered instead of {T) .'20 ;} '\z" ,i‘f‘l as a charawctéris’ti.é gg‘xnéneuver
} 0

(1.5), and the distribution of the maneuvers by type may be considered as

Predefined in the following form

P,-PJ]“’) 64-*»-‘-,5';%11%") -1)
for a continuous distribution of (2.L4)
o RN
g-s (P LReqeqo Lew 3-{) 5.

The functional of the problem is written down accordingly:

for a discrete distribution (compare (2.2)) _

s { T i '
G )= G, : ) (5.9)
( ¥ 42.{ F4 | Gv.,.@(/mj) ‘}

10



for a continuous distribution (compare (2.5))

7
%,

|
H
i

439‘5 (})G‘\Q‘s.(a/az\} 1 T e

/1

/
If the number of engine types is not restricted, the optimum weight of

P

Gv will, as is known (1), amount to (with & = const.)

Gv<3)=$§ﬁ e

iRl

The performance of a given group of maneuvers (5.7) and (5.8) by means of
a preset () < S number of engine types(see point 3) is reduced to finding the

maximum sum of (5.9) with

- (w) '
Gy= va (“)’l,...,LQa)\

or the maximum integral of (5.10) with

G,.(})é G, (w-r..0)

(vhere Q is predefined, and optimum G(W) levels should be selected).

v
In the case of the problem involving the selection of the optimum param-
eters of the universal module (see point h), oAGv should be substituted for

G, in (5.9) and (5.10), and the specific gravity of the power source @ should

11




be assumed as depending on AGv rather than on GV. The functional of (5.9) will

then be expressed as

o986+ [xGe,) 20} -

(5.11)

S g

and the functional of (5.10) as

%, I

{ '
- -1 - (5.12
{G)= AG, S}.S’(})G‘ G’AG‘-f-[o((AQ“)/Qa]} l)di - (512)

In (5.11), c(s) represents arbitrary positive integers, and in (5.12) o
stands for a piecewise-constant function with an arbitrary number of integral
levels.

We will designate

‘I’Qf’fi"} (0@41))2.&/0(,‘ (231)

(¢ is the limiting value of the specific gravity of the power source, assuming
an infinite power) and consider some cases when the maneuvers are distributed

continuously within a range of (@O,Ql) with equal probability, that is

0 1/(8:8) wo 84343, | Q=0unen $¢F, >4,

12




The dependence of the specific gravity of the power source on #$absolute
parameters ( G, , Y- /’3 G, {0 _c,;_[u ') does not substantially affect
the methods of soiution. 'i‘he introdué{;i;)ﬁ “of this dependence in a problem
involving a fixed number of G\()W) levels does not produce any gualitative
changes. In the case of a universal module, however, the a(AGv) or& (AG\))
dependence is important from a qualitative point of view. With \& = l
the optimum size of the module coverages to zero, but if Q@ /’34 G? 4 0,
the optimum size of the module is finite. 7 N /5

The (5.10) functional of the first problem is therefore recorded as

=1,
\

(5.13)

‘(G",>‘.ﬁ SG (m"‘ d‘f

1~ %o

and the (5.12) functional of the second problem as

{G, 88 (. { |
-¢ g 0'.( l)dis (5.14)

TAG,+2 (aG) ¢

The (5.13) integral is used by segment (@éw), QZ(LW))’ where the G\()W) level
is optimal

§ (w) G(w) 7 » :
(G )‘ ______, fp A - (@:wl é._‘m) |

(7~ S,
1' ° §°+G:,

13




The moments of changing from one level to another are determined from the

1l

maximum subintegral expression of (5.13). After that the problem is reduced to

flndlng the maximum Q function of the following variables (G )‘ Q (G %
* - B

G ) provided that the subintegral expression of (5.13) is nonnegative ,

. MA,:Z‘

which is equivalent to the following condition

(w) ‘
min G, {1-9%

1
W=1i,.., 8

This procedure can be carried out numerically by the steepest descent
method. With Q = 1, the optimal value of the only G\(’l) is defined by the

solution of the following equation

. = H ’ ’ @) ) L
PG 4 g G G, | |

- - i m 0
26," §-9 3+6) (3.a™) (346

if the root of that equation is found to be the lesser (1 - Ql)” otherwise
Gél) =1-4%.
Shown in figure 1 is a graph of an averaged paylocad < Gn> for various interwvals
4AQ) - é - @ = 0; 0,4, 0.4; 0, 8\ depending on the initial interval
point Q . The dotted curves correspond to the continuous optimum law of change
§TL‘{ § &(POI' infinite number of engine types see dotted line in
figure 2). It appears that one type of propulsion system (curves Q = 1) can be
used to approach very closely to the maximum possible values of a payload. A

rr

change to two types of propulsion system would reduce the loss of payload almost

14
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to zero (the dotted curves and Q = 2 curves, with the exception of A? = 0.8, are
indistinguishable within the scale of the figure).

An instance of optimum distribution of the weight of propulsion system G\)

) o o (1)
by maneuver by &), with Q = 1.2, », is cited in figure 2. The G\) (@O,AQ)
dependence is presented in figure 3 (Q = 1). The straight line segments cor-
N (1) -

respond to the limitation of G\) £ 1 @1 ,

16
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The second problem calls for the construction of a piecewise-continuous
function o(@) with integral levels, and the selection of the value of parameter
AGv’ ensuring a maximum of (5.14), on condition that the subintegral expression

of (5.14) is nonnegative.

17



We will replace variable X = 2 @ and introduce the following designation

£ » ~ e e e e e o \\
K(T AG\’ %G’AG ( 4 *i)dr‘ (5.15)
GAG ;X :

0 N 3

(5.14) will then be rewritten as follows

4G,.7=

(5.16)

/g

The (5.15) integral, just like the (5.13), is taken by segment between the

( é‘i ['K (.X :A*G\ K(X@,)AG )

O‘j level changes, and the moments of change are determined from the maximum

subintegral expression of .1 by the o. integral wvalues
gral exp (5.15) by ; er ] G=4 2,.«’6"“ 3Gy

-E ({ /4AG,)‘ or E (l /A‘AG ).;i o Vvhere E indicates the integral part of the

number, see AGvd(Q) in figure h). ‘The K(x) dependence for various AG\) values
is shown in figure 5. It appears that,with AG\) < 0.1, the curves practically

coincide with the limiting dependence (AG\) - 0)
K (=,0) = x (1- %ix'+ ‘?'ﬁ) (5.17)

An approximate substitution of X (x, o) for K (x, AG\)) in (5.16),(with

AG\) <0.,1)wi11 produce

(RN < LUS RECUSS
“-: u B : r + \]-—; | 1

18
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where I 4 (AG\,) Q(‘."AG*)/él (a limitation byx from the top was

made possible by the nonnegativity of subintegral expression (5.15)).

19




The finding of AGv optimum value requires a given ;2 -§1 dependence,

for example

where AGv is the specific gravity of the module with power converging to zero.
The nature of this dependence coincides with those described in literature
(see figure 6 and [ll}

The permissible change interval is determined from the [QO, Ql] range

on the basis of the nonnegativity and payload for each maneuver 1L

T PO R
+ ! LIL& {:Q_G'_‘] o
g ~\{ 4 ; @l R

In this interval the <Gﬁ> of (5.18) turns out to be a monotonically

decreasing function of‘ﬂl. Hence the optimum j{and.AGv values are equal to

S ST

% =%, AG ot / g
sz" Agvauv ﬁi/\*,‘i_)‘i

With AG = 0.1, the problem can be solved numerically by the use of the
v
known K (x, AGv)“dependence, presented in figure 5, and by formula (5.16).
: *
The results of the solution are shown in figures 7 and 8 (AGQ = 0.001) which

are similar to figures 1 and 2.
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